A Novel DNA Vaccine Technology Conveying Protection against a Lethal Herpes Simplex Viral Challenge in Mice

نویسندگان

  • Julie L. Dutton
  • Bo Li
  • Wai-Ping Woo
  • Joshua O. Marshak
  • Yan Xu
  • Meei-li Huang
  • Lichun Dong
  • Ian H. Frazer
  • David M. Koelle
چکیده

While there are a number of licensed veterinary DNA vaccines, to date, none have been licensed for use in humans. Here, we demonstrate that a novel technology designed to enhance the immunogenicity of DNA vaccines protects against lethal herpes simplex virus 2 (HSV-2) challenge in a murine model. Polynucleotides were modified by use of a codon optimization algorithm designed to enhance immune responses, and the addition of an ubiquitin-encoding sequence to target the antigen to the proteasome for processing and to enhance cytotoxic T cell responses. We show that a mixture of these codon-optimized ubiquitinated and non-ubiquitinated constructs encoding the same viral envelope protein, glycoprotein D, induced both B and T cell responses, and could protect against lethal viral challenge and reduce ganglionic latency. The optimized vaccines, subcloned into a vector suitable for use in humans, also provided a high level of protection against the establishment of ganglionic latency, an important correlate of HSV reactivation and candidate endpoint for vaccines to proceed to clinical trials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Single Intramuscular Vaccination of Mice with the HSV-1 VC2 Virus with Mutations in the Glycoprotein K and the Membrane Protein UL20 Confers Full Protection against Lethal Intravaginal Challenge with Virulent HSV-1 and HSV-2 Strains

Herpes Simplex Virus type-1 (HSV-1) and type-2 (HSV-2) establish life-long infections and cause significant orofacial and genital infections in humans. HSV-1 is the leading cause of infectious blindness in the western world. Currently, there are no available vaccines to protect against herpes simplex infections. Recently, we showed that a single intramuscular immunization with an HSV-1(F) mutan...

متن کامل

Immunogenicity and Efficacy of Intramuscular Replication-Defective and Subunit Vaccines against Herpes Simplex Virus Type 2 in the Mouse Genital Model

Herpes simplex virus type 2 (HSV-2) is a sexually transmitted virus that is highly prevalent worldwide, causing a range of symptoms that result in significant healthcare costs and human suffering. ACAM529 is a replication-defective vaccine candidate prepared by growing the previously described dl5-29 on a cell line appropriate for GMP manufacturing. This vaccine, when administered subcutaneousl...

متن کامل

HSV-2 ΔgD elicits FcγR-effector antibodies that protect against clinical isolates.

A single-cycle herpes simplex virus (HSV) deleted in glycoprotein D (ΔgD-2) elicited high titer HSV-specific antibodies (Abs) that (i) were rapidly transported into the vaginal mucosa; (ii) elicited antibody-dependent cell-mediated cytotoxicity but little neutralization; (iii) provided complete protection against lethal intravaginal challenge; and (iv) prevented establishment of latency in mice...

متن کامل

Heamagglutinin Conserved Domain (HA2) Prepared in Prokaryotic System is Immunogenic in Mice but not Protective against Lethal Influenza Challenge

Background and Aims: Influenza vaccine production process is time-consuming with little-to-no cross-protection which requires annual adjustment. The construction of a universal vaccine to deal with the pandemics and epidemics which occasionally threat human population is the aim of many researches worldwide. Today, influenza vaccines are mostly against two major antigenic proteins, hemagglutini...

متن کامل

Ligand epitope antigen presentation system vaccines against herpes simplex virus.

The Ligand Epitope Antigen Presentation System (L.E.A.P.S.) approach to vaccine development allowed construction of immunogens from defined T cell epitopes from herpes simplex virus (HSV) proteins that conferred protection against lethal challenge by the virus. This technology utilizes specific peptides which bind to CD4, CD8 or other proteins on the surface of T cells (T cell binding ligand (T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013